25 research outputs found

    A Faster kk-means++ Algorithm

    Full text link
    K-means++ is an important algorithm to choose initial cluster centers for the k-means clustering algorithm. In this work, we present a new algorithm that can solve the kk-means++ problem with near optimal running time. Given nn data points in Rd\mathbb{R}^d, the current state-of-the-art algorithm runs in O~(k)\widetilde{O}(k ) iterations, and each iteration takes O~(ndk)\widetilde{O}(nd k) time. The overall running time is thus O~(ndk2)\widetilde{O}(n d k^2). We propose a new algorithm \textsc{FastKmeans++} that only takes in O~(nd+nk2)\widetilde{O}(nd + nk^2) time, in total

    Data-based bipartite formation control for multi-agent systems with communication constraints

    Get PDF
    This article investigates data-driven distributed bipartite formation issues for discrete-time multi-agent systems with communication constraints. We propose a quantized data-driven distributed bipartite formation control approach based on the plant’s quantized and saturated information. Moreover, compared with existing results, we consider both the fixed and switching topologies of multi-agent systems with the cooperative-competitive interactions. We establish a time-varying linear data model for each agent by utilizing the dynamic linearization method. Then, using the incomplete input and output data of each agent and its neighbors, we construct the proposed quantized data-driven distributed bipartite formation control scheme without employing any dynamics information of multi-agent systems. We strictly prove the convergence of the proposed algorithm, where the proposed approach can ensure that the bipartite formation tracking errors converge to the origin, even though the communication topology of multi-agent systems is time-varying switching. Finally, simulation and hardware tests demonstrate the effectiveness of the proposed scheme

    Changes in Cortical Thickness in Patients With Early Parkinson’s Disease at Different Hoehn and Yahr Stages

    Get PDF
    Objectives: This study was designed to explore changes in cortical thickness in patients with early Parkinson’s disease (PD) at different Hoehn and Yahr (H-Y) stages and to demonstrate the association of abnormally altered brain regions with part III of the Unified Parkinson’s Disease Rating Scale (UPDRS-III).Materials and Methods: Sixty early PD patients and 29 age- and gender-matched healthy controls (HCs) were enrolled in this study. All PD patients underwent comprehensive clinical and neuropsychological evaluations and 3.0 T magnetic resonance scanning. Patients with H-Y stage ≤1.5 were included in the mild group, and all other patients were included in the moderate group. FreeSurfer software was used to calculate cortical thickness. We assessed the relationship between UPDRS-III and regional changes in cortical thinning, including the bilateral fusiform and the temporal lobe.Results: The average cortical thickness of the temporal pole, fusiform gyrus, insula of the left hemisphere and fusiform gyrus, isthmus cingulate cortex, inferior temporal gyrus, middle temporal cortex and posterior cingulate cortex of the right hemisphere exhibited significant decreasing trends in HCs group and PD groups (i.e., the mild group and moderate group). After controlling for the effects of age, gender, and disease duration, the UPDRS-III scores in patients with early PD were correlated with the cortical thickness of the left and right fusiform gyrus and the left temporal pole (p < 0.05).Conclusion: The average cortical thickness of specific brain regions reduced with increasing disease severity in early PD patients at different H-Y stages, and the UPDRS-III scores of early PD patients were correlated with cortical thickness of the bilateral fusiform gyrus and the left temporal pole

    DESIGNS FOR T SHAPE FISHWAYS

    No full text
    Fishway, Civil engineering measures, Hydrodynamics, Hydraulics, Numerical simulationThis paper presented results of a numerical study on seven designs of T shape fishways. The trajectory equation of the maximum velocity line and the V/Va equation of the T shape fishways were obtained from the results. It was found that a width of 1.5bs for the T lateral baffle, a width of 5bs and a length of 6.25bs for the pools were very satisfactory for the dimensional design of T shape fishways, where bs was the slot width. From the seven designs studied, design 3 (D3, D denotes “design”) was recommended for practical use

    Scale Effect on the Anisotropy of Acoustic Emission in Coal

    No full text
    Acoustic emission (AE) in coal is anisotropic. In this paper, we investigate the microstructure-related scale effect on the anisotropic AE feature in coal at unconfined loading process. A series of coal specimens were processed with diameters of 25 mm, 38 mm, 50 mm, and 75 mm (height to diameter ratio of 2) and anisotropic angles of 0°, 15°, 30°, 45°, 60°, and 90°. The cumulative AE counts and energy dissipation increase with the specimen size, while the energy dissipation per AE count behaves in the opposite way. This may result from the increasing amount of both preexisting discontinuities and cracks (volume/number) needed for specimen failure and the lower energy dissipation AE counts generated by them. The effect of microstructures on the anisotropies of AE weakens with the increasing specimen size. The TRFD and its anisotropy reduce as the specimen size increases, and the reduction of fractal dimension is most pronounced at the anisotropic angle of 45°. The correlation between TRFD and cumulative AE energy in the specimens with different sizes are separately consistent with the negative exponential equation proposed by Xie and Pariseau. With the specimen size gain, the reduction of the TRFD weakens with the increasing amount of cumulative absolute AE energy

    Upregulation of MIF as a defense mechanism and a biomarker of Alzheimer’s disease

    No full text
    Background: Macrophage migration inhibitory factor (MIF) is a pro-inflammatory cytokine. Chronic inflammation induced by amyloid β proteins (Aβ) is one prominent neuropathological feature in Alzheimer’s disease (AD) brain. Methods: Elisa, Western blot, and immunohistochemical staining analysis were performed to examine the level of MIF protein in CSF and brain tissues. MTT and LDH assays were used to examine the neurotoxicity, and the Morris Water Maze test was performed to examine the cognitive function in the MIF+/−/APP23 transgenic mice. Results: MIF expression was upregulated in the brain of AD patients and AD model mice. Elevated MIF concentration was detected in the cerebrospinal fluid of AD patients but not in that of the patients suffering from mild cognitive impairment and vascular dementia. Reduced MIF expression impaired learning and memory in the AD model mice. MIF expression largely associates with Aβ deposits and microglia. The binding assay revealed a direct association between MIF and Aβ oligomers. Neurons instead of glial cells were responsible for the secretion of MIF upon stimulation by Aβ oligomers. In addition, overexpression of MIF significantly protected neuronal cells from Aβ-induced cytotoxicity. Conclusion: Our study suggests that neuronal secretion of MIF may serve as a defense mechanism to compensate for declined cognitive function in AD, and increased MIF level could be a potential AD biomarker.Medicine, Faculty ofNon UBCPsychiatry, Department ofReviewedFacult

    eEF1A1 promotes colorectal cancer progression and predicts poor prognosis of patients

    No full text
    Abstract Colorectal cancer (CRC) is a major leading cause of cancer mortality worldwide in which dysregulated protein synthesis plays an etiologic role. The eukaryotic elongation factor 1 A1 (eEF1A1) exerts significant effects on protein synthesis by contributing to peptide chain extension. Whereas its role in CRC remains to be investigated. In this study, we found that the mRNA and protein levels of eEF1A1 were significantly upregulated in CRC cell lines and tissues. Elevated expression of eEF1A1 was correlated with shorter overall survival in 94 CRC patients. The inhibition of proliferation and cell cycle block were observed in CRC cells after eEF1A1 downregulation. Mechanistically, weighted gene correlation network analysis and further Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis suggested that mitogen‐activated protein kinases (MAPKs) signaling pathways were significantly enriched in high‐eEF1A1 expression group, and the levels of phosphorylated p38/JNK/ERK MAPK were dramatically decreased after eEF1A1 downregulation. Overexpression of eEF1A1 in CRC correlated with a poor prognosis. Collectively, this study determined the oncogenic role of eEF1A1 in CRC proliferation and tumorigenesis. eEF1A1 might be a promising therapeutic target and prognostic biomarker in CRC

    Neuronavigated repetitive transcranial magnetic stimulation improves depression, anxiety and motor symptoms in Parkinson’s disease

    No full text
    Background: Repetitive transcranial magnetic stimulation (rTMS) is a potential treatment option for Parkinson’s disease patients with depression (DPD), but conflicting results in previous studies have questioned its efficacy. Method: To investigate the safety and efficacy of neuronavigated high-frequency rTMS at the left DLPFC in DPD patients, we conducted a randomized, double-blind, sham-controlled study (NCT04707378). Sixty patients were randomly assigned to either a sham or active stimulation group and received rTMS for ten consecutive days. The primary outcome was HAMD, while secondary outcomes included HAMA, MMSE, MoCA and MDS-UPDRS-III. Assessments were performed at baseline, immediately after treatment, 2 weeks, and 4 weeks post-treatment. Results: The GEE analysis showed that the active stimulation group had significant improvements in depression, anxiety, and motor symptoms at various time points. Specifically, there were significant time-by-group interaction effects in depression immediately after treatment (β, −4.34 [95% CI, −6.90 to −1.74; P = 0.001]), at 2 weeks post-treatment (β, −3.66 [95% CI, −6.43 to −0.90; P = 0.010]), and at 4 weeks post-treatment (β, −4.94 [95% CI, −7.60 to −2.29; P < 0.001]). Similarly, there were significant time-by-group interaction effects in anxiety at 4 weeks post-treatment (β, −2.65 [95% CI, −4.96 to −0.34; P = 0.024]) and in motor symptoms immediately after treatment (β, −5.72 [95% CI, −9.10 to −2.34; P = 0.001] and at 4 weeks post-treatment (β, −5.43 [95% CI, −10.24 to −0.61; P = 0.027]). Conclusion: The study suggested that neuronavigated high-frequency rTMS at left DLPFC is effective for depression, anxiety, and motor symptoms in PD patients
    corecore